Part Number Hot Search : 
BSS145 KS51850 N25F80 2N1984 F0805 OM4215SW D1111 DM74A
Product Description
Full Text Search
 

To Download IL4218 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 600 V
IL4216 700 V IL4217 800 V IL4218
Triac Optocoupler
FEATURES * High Input Sensitivity IFT=1.3 mA * 600/700/800 V Blocking Voltage * 300 mA On-State Current * High Static dv/dt 10,000 V/ sec., typical * Inverse Parallel SCRs Provide Commutating dv/dt >10 kV/ sec * Very Low Leakage <10 A * Isolation Test Voltage from Double Molded Package 5300 VRMS * Package, 6-Pin DIP * Underwriters Lab File #E52744 * V VDE Approval #0884 Available with Option 1
DE
Dimensions in inches (mm)
3 .248 (6.30) .256 (6.50) 4 5 6 2 1 pin one ID
LED 1 Anode LED Cathode 2 NC 3 6 Triac MT2 Substrate 5 do not connect 4 Triac MT1
.335 (8.50) .343 (8.70) .039 (1.00) Min. 4 typ. .018 (0.45) .022 (0.55) .048 (0.45) .022 (0.55) .130 (3.30) .150 (3.81) 18 .031 (0.80) min. .031 (0.80) .035 (0.90) .100 (2.54) typ. 3-9 .010 (.25) typ. .300-.347 (7.62-8.81) .300 (7.62) typ.
DESCRIPTION The IL421x consists of an AlGaAs IRLED optically coupled to a pair of photosensitive non-zero crossing SCR chips and are connected inversely parallel to form a TRIAC. These three semiconductors are assembled in a six pin 0.3 inch dual in-line package, using high insulation double molded, over/under leadframe construction. High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger current of less than 1.3 mA (DC). The IL421x uses two discrete SCRs resulting in a commutating dv/dt of greater than 10 kV/s. The use of a proprietary dv/dt clamp results in a static dv/dt of greater than 10 kV/s. This clamp circuit has a MOSFET that is enhanced when high dv/dt spikes occur between MT1 and MT2 of the TRIAC. The FET clamps the base of the phototransistor when conducting, disabling the internal SCR predriver. The blocking voltage of up to 800 V permits control of off-line voltages up to 240 VAC, with a safety factor of more than two, and is sufficient for as much as 380 VAC. Current handling capability is up to 300 mA RMS, continuous at 25C. The IL421x isolates low-voltage logic from 120, 240, and 380 VAC lines to control resistive inductive, or capacitive loads including motors solenoids, high current thyristors or TRIAC and relays. Applications include solid-state relays, industrial controls, office equipment, and consumer appliances.
.114 (2.90) .130 (3.0)
Maximum Ratings Emitter Reverse Voltage .................................................................................6.0 V Forward Current............................................................................... 60 mA Surge Current .................................................................................... 2.5 A Power Dissipation..........................................................................100 mW Derate Linearly from 25C .......................................................1.33 mW/C Thermal Resistance.....................................................................750 C/W Detector Peak Off-State Voltage IL4216 .............................................................................................600 V IL4217 .............................................................................................700 V IL4218 .............................................................................................800 V RMS On-State Current ................................................................... 300 mA Single Cycle Surge............................................................................ 3.0 A Total Power Dissipation .................................................................500 mW Derate Linearly from 25C .........................................................6.6 mW/C Thermal Resistance......................................................................150C/W Package Lead Soldering Temperature ..............................................260C/5.0 sec. Creepage Distance ...................................................................... 7.0 mm Clearance ..................................................................................... 7.0 mm Storage Temperature .......................................................-55C to +150C Operating Temperature ...................................................-55C to +100C Isolation Test Voltage................................................................ 5300 VRMS Isolation Resistance VIO=500 V, TA=25C ................................................................... 1012 VIO=500 V, TA=100C ................................................................. 1011
2001 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) 2-166 March 17, 2000-12
Characteristics TA=25C
Parameter Emitter Forward Voltage Breakdown Voltage Reverse Current Capacitance Thermal Resistance, Junction to Lead Output Detector Repetitive Peak Off-State Voltage IL4216 IL4217 IL4218 Off-State Voltage IL4216 IL4217 IL4218 Off-State Current Reverse Current On-State Voltage On-State Current Surge (Non-Repetitive) On-State Current Holding Current Latching Current LED Trigger Current Turn-On Time Turn-Off Time -- Symbol Min. -- 6.0 -- -- -- Typ. 1.3 30 0.1 40 750 Max. 1.5 -- 10 -- -- Unit V V A pF K/W Condition
VF VBR IR CO RTHJL
IF=20 mA IR=10 mA VR=6.0 V VF=o V, f=1.0 MHz
--
VDRM VDRM VDRM VD(RMS) VD(RMS) VD(RMS) ID(RMS) IR(RMS) VTM ITM ITSM IH IL IFT tON tOFF dv/dtcr dv/dtcrq
600 700 800 424 484 565 -- -- -- -- -- -- -- -- -- --
650 750 850 -- 460 536 613 10 10 1.7 -- -- 65 5.0 0.7 35 50 100 100 3.0 300 3.0 200 -- 1.3 -- -- -- -- -- -- -- --
V V V V V V A A V mA A A mA mA s s V/s
IDRM=100 A IDRM=100 A IDRM=100 A
ID(RMS)=70 A ID(RMS)=70 A ID(RMS)=70 A
VD=600 V, TA=100C
VR=600 V, TA=100C
IT=300 mA PF=1.0, VT(RMS)=1.7 V f=50 Hz VT=3.0 V VT=2.2 V VAK=5.0 V VRM=VDM=424 VAC PF=1.0, IT=300 mA
Critical State of Rise of Off-State Voltage
10000 --
5000 -- -- --
100
VD=0.67 VDRM, Tj=25C VD=0.67 VDRM, Tj=80C VD=0.67 VDRM, di/dtcrq15 A/ms Tj=25C VD=0.67 VDRM, di/dtcrq15 A/ms Tj=80C
Critical Rate of Rise of Voltage at Current Commutation
10000 5000
V/s
Off-State Current Thermal Resistance, Junction to Lead
Package Critical Rate of Rise of Coupled Input-Output Voltage Common Mode Coupling Capacitor Package Capacitance
di/dt RTHJL
dv(IO)/dt CCM
--
--
A/ms K/W
V/s pF pF
IT=300 mA
150
-- 0.01 0.8
--
IT=0 A, VRM=VDM=300 VAC -- f=1.0 MHz, VIO=0 V
5000 -- --
-- -- --
CIO
2001 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) 2-167
IL4216/4217/4218 March 17, 2000-12
Figure 1. LED forward current vs. forward voltage
Figure 4. Maximum LED power dissipation
Figure 2. Forward voltage versus forward current
Figure 5. On-state terminal voltage vs. terminal current
Figure 3. Peak LED current vs. duty factor, Tau
If(pk) - Peak LED Current - mA 10000 Duty Factor 1000 .005 .01 .02 .05 .1 .2 .5 t DF = /t
Figure 6. Maximum output power dissipation
100
10 10-6
10-5
10-4 10-3 10-2 10-1 t - LED Pulse Duration - s
100
101
2001 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) 2-168
IL4216/4217/4218 March 17, 2000-12
Power Factor Considerations A snubber isn't needed to eliminate false operation of the TRIAC driver because of the IL411's high static and commutating dv/dt with loads between 1 and 0.8 power factors. When inductive loads with power factors less than 0.8 are being driven, include a RC snubber or a single capacitor directly across the device to damp the peak commutating dv/dt spike. Normally a commutating dv/dt causes a turning-off device to stay on due to the stored energy remaining in the turning-off device. But in the case of a zero voltage crossing optotriac, the commutating dv/dt spikes can inhibit one half of the TRIAC from turning on. If the spike potential exceeds the inhibit voltage of the zero cross detection circuit, half of the TRIAC will be heldoff and not turn-on. This hold-off condition can be eliminated by using a snubber or capacitor placed directly across the optotriac as shown in Figure 7. Note that the value of the capacitor increases as a function of the load current. The hold-off condition also can be eliminated by providing a higher level of LED drive current. The higher LED drive provides a larger photocurrent which causer. the phototransistor to turn-on before the commutating spike has activated the zero cross network. Figure 8 shows the relationship of the LED drive for power factors of less than 1.0. The curve shows that if a device requires 1.5 mA for a resistive load, then 1.8 times (2.7 mA) that amount would be required to control an inductive load whose power factor is less than 0.3.
Figure 7. Shunt capacitance versus load current versus power factor
Figure 8. Normalized LED trigger current versus power factor
2001 Infineon Technologies Corp. * Optoelectronics Division * San Jose, CA www.infineon.com/opto * 1-888-Infineon (1-888-463-4636) 2-169
IL4216/4217/4218 March 17, 2000-12


▲Up To Search▲   

 
Price & Availability of IL4218

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X